Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels.

نویسندگان

  • J H Song
  • C S Huang
  • K Nagata
  • J Z Yeh
  • T Narahashi
چکیده

The effects of riluzole, a neuroprotective drug, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion neurons were studied using the whole-cell patch clamp technique. At the resting potential, riluzole preferentially blocked TTX-S sodium channels, whereas at more negative potentials, it blocked both types of sodium channels almost equally. The apparent dissociation constants for riluzole to block TTX-S and TTX-R sodium channels in their resting state were 90 and 143 microM, respectively. Riluzole shifted the voltage dependence of activation of TTX-R sodium channels in the depolarizing direction more than that of TTX-S sodium channels. The voltage dependence of the fast inactivation of both types of sodium channels was shifted in the hyperpolarizing direction in a dose-dependent manner, and the apparent dissociation constants for riluzole to block the inactivated channels were estimated to be 2 and 3 microM for the TTX-S and TTX-R sodium channels, respectively, indicating a much higher affinity for the inactivated channels than for the resting channels. Riluzole was equally effective in blocking both types of sodium channels in their slow inactivated state. Since more TTX-S channels are inactivated than TTX-R channels at the resting potential, riluzole blocks TTX-S sodium channels more potently than TTX-R sodium channels. It was concluded that one of the mechanisms by which riluzole exerts its neuroprotective action is to preferentially block the inactivated sodium channel of damaged or depolarized neurons under ischemic conditions, thereby suppressing excess stimulation of the glutamatergic receptors and massive influx of Ca++.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NaV1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons.

Olfactory sensory neurons (OSNs) fire spontaneously as well as in response to odor; both forms of firing are physiologically important. We studied voltage-gated Na(+) channels in OSNs to assess their role in spontaneous activity. Whole cell patch-clamp recordings from OSNs demonstrated both tetrodotoxin-sensitive and tetrodotoxin-resistant components of Na(+) current. RT-PCR showed mRNAs for fi...

متن کامل

Tetrodotoxin-, dihydropyridine-, and riluzole-resistant persistent inward current: novel sodium channels in rodent spinal neurons.

Recently, we reported the tetrodotoxin (TTX)- and dihydropyridine (DHP)-resistant (TDR) inward currents in neonatal mouse spinal neurons. In this study, we further characterized these currents in the presence of 1-5 μM TTX and 20-30 μM DHP (nifedipine, nimodipine, or isradipine). TDR inward currents were recorded by voltage ramp (persistent inward current, TDR-PIC) and step (TDR-I(p)) protocols...

متن کامل

Differential contribution of sodium channel subtypes to action potential generation in unmyelinated human C-type nerve fibers.

BACKGROUND Multiple voltage-dependent sodium channels (Na(v)) contribute to action potentials and excitability of primary nociceptive neurons. The aim of the current study was to characterize subtypes of Na(v) that contribute to action potential generation in peripheral unmyelinated human C-type nerve fibers. METHODS Registration of C-fiber compound action potentials and determination of memb...

متن کامل

Differential actions of pacific ciguatoxin-1 on sodium channel subtypes in mammalian sensory neurons.

Pacific ciguatoxin-1 (P-CTX-1), is a highly lipophilic cyclic polyether molecule originating from the marine dinoflagellate Gambierdiscus toxicus. Its effects were investigated on sodium channel subtypes present in acutely dissociated rat dorsal root ganglion neurons, using whole-cell patch clamp techniques. Concentrations of P-CTX-1 ranging from 0.2 to 20 nM had no effect on the kinetics of te...

متن کامل

Kinetic properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channel currents in neonatal rat trigeminal ganglion neurons.

The kinetic properties of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na' channels in acutely dissociated neonatal rat trigeminal ganglion neurons were studied using whole-cell and cell-attached patch-clamp recordings. The time course of TTX-R currents was slower than that of TTX-S currents. Compared with TTX-S currents, TTX-R currents had more positive half-activation and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 282 2  شماره 

صفحات  -

تاریخ انتشار 1997